


1. (a) Rel. Minima at $(-\sqrt{3}, -5/4)$, $(\sqrt{3}, -5/4)$, Rel. Maximum at (0,1), Inflection Points at (-1, -1/4), (1, -1/4)

1. (b) Relative minimum at (0,-1), Inflection points at $(-1/\sqrt{3}, -1/2)$, $(1/\sqrt{3}, -1/2)$ Horizontal asymptote is y =1

1. (c) No maximum or minimum points. No inflection points. Asymptotes to the line y=x+2. Vertical asymptote at x=2.

- $2.\ 20/\pi = 6.37\ cm$
- 3. (a) $y(x) = x^2/2 + 5x 4$ (b) $y(x) = x^3/3 + 4$
- 4. (a) $z^6/6 z^4/2 z + C$ (b) $-t^{-2}/2 + 4/3 t^{3/2} t^3 + C$
 - (c) $e^{2y}/2 + 3y^{1/3} + C$ (d) $-(2/3)\cos(3x) \sin x + C$
- 5. (a) Largest is 5 at x = 1, smallest is 4 at x = 2
 - (b) Largest is 1/2 when x = 1, smallest is -1/2 when x = -1
- 6. (a) T'(t) = c (15 T(t)) where $c = (\ln 3)/10$ and T(0) = 30
 - (b) $T(t) = 15 + 15 e^{-ct}$ where $c = (\ln 3)/10$ and T(20) = 16 2/3
- 7. $1 = b S^*$
- 8. (a) Concave up for $x < 2 \sqrt{2}$ and $x > 2 + \sqrt{2}$, concave down for $2 \sqrt{2} < x < 2 + \sqrt{2}$, inflection points occur at $x = 2 + \sqrt{2}$ and $x = 2 \sqrt{2}$
 - (b) Concave down for 0 < x < 1/2, concave up for x > 1/2 inflection point occurs when x = 1/2