Note: This sample exam is longer than the actual exam will be - it is designed to give you some additional practice problems.

1. Find the following limits, if they exist. If they don't exist, state so.
(a)

$$
\begin{array}{cc}
& 4-y \\
\lim _{y \rightarrow \infty} & ----- \\
2 y+3
\end{array}
$$

(b)
$\lim _{x \rightarrow 3} \frac{4 x+2}{} \begin{gathered}-------1\end{gathered}$
(c)

$$
\lim _{h \rightarrow 0} 3 h^{2}+\mathrm{h}
$$

(d) $5 x^{2}$
(d) $5 x^{2}$

(e)

$$
\lim _{x \rightarrow 2} \begin{gathered}
x^{3}-8 \\
------2
\end{gathered}
$$

(f)

	3 y
\lim	---------
$\mathrm{y} \rightarrow \infty$	$2 \mathrm{y}+\sqrt{ } \mathrm{y}$

(g)

$$
\lim _{x \rightarrow-1}\left(8 x^{2}+\frac{x-1}{x+---1}\right)
$$

2. Sketch the graphs of three different functions which are not continuous at $x=2$, being sure to give the equations for the functions you are graphing.
3. For each of the following functions, state where the function is continuous:
(a)

$$
f(x)= \begin{cases}x+1 & \text { for } x \leq-1 \\ x^{2} & \text { for }-1<x \leq 1 \\ x & \text { for } x>1\end{cases}
$$

(b)

$$
g(x)=\left\{\begin{aligned}
x^{2} & \text { for } x \leq 0 \\
1 / x^{2} & \text { for } 0<x<1 / 2 \\
x-1 & \text { for } x \geq 1 / 2
\end{aligned}\right.
$$

4. Find the derivative of each of the following functions:
(a) $f(x)=3 x^{2}-x+4 / x$
(b) $g(y)=\cos (1-3 y)$
(c) $y(t)=\left(t^{2}+4 t\right)^{5}$
(d) $f(z)=3 z \exp \left(z^{2}-4 z\right)$
(e) $g(x)=\ln \left(x^{2}+3 x+1\right)$
(f) $f(t)=(3 t-1) /\left(t^{2}+1\right)$
5. Find the equation of the line which is tangent to the graph of $y=3 x^{2}+2 x-3$ at $\mathrm{x}=1$.

Math 152 - Sample Exam\#1-Spring 2005 (Continued)

6. Suppose $L(t)$ gives the length of a fish in cm at time t, where t is measured in months since hatching.
(a) Give the definition of the derivative of $\mathrm{L}(\mathrm{t})$ at time 2 months, $\mathrm{L}^{\prime}(2)$.
(b) Explain in words what $\mathrm{L}^{\prime}(2)$ means, and give its units.
(c) If $L(t)$ looks like the below graph, sketch a graph which indicates how $L^{\prime}(t)$ changes from time 0 to time 10 months.

7. A particle's position at time t is given by $f(t)=\left(t^{2}+2 t\right)^{1 / 2}$ where t is measured in seconds and $f(t)$ is measured in meters. Give a function for the instantaneous speed of the particle and one for its acceleration. What is the particle's speed at time 4 seconds? Is the particle accelerating or deccelerating at time 4 seconds? What is the velocity of the particle after a long time?
8. A reptile's core body temperature in ${ }^{\circ} \mathrm{C}$ is found to vary through a day according to $\mathrm{T}(\mathrm{t})=20+10 \cos (\pi \mathrm{t} / 12)$ where t is in hours and $\mathrm{t}=0$ corresponds to noon.
(a) Is the core temperature increasing or decreasing at 4PM?
(b) What is the rate of change of body temperature at 6 PM ?
(c) At what times of day is the rate of change of core body temperature equal to zero?

Math 152 - Sample Exam \#1-Spring 2005 (Answers)

1. (a) $-1 / 2$
(b) $7 / 2$
(c) $1 / 3$
(d) $5 / 2$
(e) 12 (f) $3 / 2$ (g) Doesn't exist
2. Many possible choices, including $f(x)=1 /(x-2), g(x)=\ln (x-2)$, $y(x)=x^{2}$ for $x<2$ and x for $x>2$
3. (a) Continuous on $(-\infty,-1) \cup(-1, \infty)$ (b) Continuous on $(-\infty, 0) \cup(0, .5) \cup(.5, \infty)$
4. (a) $f^{\prime}(x)=6 x-1-4 / x^{2}$ (b) $g^{\prime}(y)=3 \sin (1-3 y) \quad$ (c) $y^{\prime}(t)=10(t+2)\left(t^{2}+4 t\right)^{4}$
(d) $f^{\prime}(z)=3\left(2 z^{2}-4 z+1\right) \exp \left(z^{2}-4 z\right) \quad$ (e) $g^{\prime}(x)=(2 x+3) /\left(x^{2}+3 x+1\right)$
(f) $\mathrm{f}^{\prime}(\mathrm{t})=\left(3+2 \mathrm{t}-3 \mathrm{t}^{2}\right) /\left(\mathrm{t}^{2}+1\right)^{2}$
5. slope $=8$, point is $(1,2)$, tangent line is $y=8 x-6$
6. (a)

$$
L^{\prime}(t)=\lim _{h \rightarrow 0} \frac{L(h+2)-L(2)}{h}=\lim _{1 \rightarrow 2} \frac{L(t)-L(2)}{t-2}
$$

(b) $L^{\prime}(2)$ is the instantaneous rate of growth in length of a fish exactly at age 2 months. Its units are $\mathrm{cm} /$ month.
(c)

7. $v(t)=(t+1) /\left(t^{2}+2 t\right)^{1 / 2}, a(t)=-\left(t^{2}+2 t\right)^{-3 / 2}, v(4)=5 / \sqrt{ } 24 \mathrm{~m} / \mathrm{s}$, deccelerating at time $\mathrm{t}=4$ since $\mathrm{a}(4)<0, \lim _{\mathrm{t} \rightarrow \infty} \mathrm{v}(\mathrm{t})=1 \mathrm{~m} / \mathrm{s}$
8. $(\mathrm{a}) \mathrm{T}^{\prime}(\mathrm{t})=-(5 / 6) \pi \sin (\pi \mathrm{t} / 12)$ so $\mathrm{T}^{\prime}(4)=-(5 / 6) \pi \sin (\pi / 3)=-(5 \sqrt{3}) \pi / 12<0$ so temperature is decreasing at 4PM
(b) $\mathrm{T}^{\prime}(6)=-(5 / 6) \pi \sin (\pi / 2)=-(5 / 6) \pi^{\circ} \mathrm{C} / \mathrm{hr}$
(c) $\mathrm{T}^{\prime}(\mathrm{t})=0$ when $\mathrm{t}=0$ and $\mathrm{t}=12$ so temperature not changing at noon and midnight

