7. Find the following:
(a) $\int\left(3 x e^{-4 x}\right) d x$
(b) $\int_{-1}^{1} \frac{1}{(2-\mathrm{x})^{3}} \mathrm{dx}$
(c) $\int \frac{\ln x}{x} d x$
8. The length of a fish of age t grows according to
$L^{\prime}(\mathrm{t})=\mathrm{K}\left(\mathrm{L}_{\infty}-\mathrm{L}\right)$
so
$L(t)=L_{\infty}(1-e$
$-K(t-t) \quad)$
with $\mathrm{L}_{\infty}=40 \mathrm{~cm}, \mathrm{~K}=.2 /$ month and $\mathrm{L}(0)=3 \mathrm{~cm}$. (a) How fast is the fish growing in length at birth? (b) At what age will the fish reach $1 / 2$ of its largest length?
9. How much work is necessary to pump the contents of a tank of liquid of density 40 kg per cubic meter just over the top of the tank if the tank is cone shaped with a circular base of radius 6 meters and a circular top of radius 3 meters with the top being 12 meters above the ground. The tank is half full of liquid at the start (e.g. the level of liquid in the tank is 6 meters above the bottom of the tank). .
10 . Find (a) the solution of $y^{\prime}=(2 t+1)$ y if $y(0)=4$.

$$
\text { (b) all solutions of } \frac{d N}{d t}=\frac{N}{2 t}
$$

Answers

1. If $A(t)=$ area of fungal culture at time $t, A^{\prime}(t)=k A(t)$ implies $A(t)=A(0) e^{k t}$.

So measure $A(t)$ at several times (e.g. $t_{1}, t_{2}, t_{3}, \ldots \quad$) and since $\ln A(t)=k t+\ln A(0)$, plot t_{i} versus $A\left(t_{i}\right)$ on semilog paper (equivalent to plotting t_{i} versus $\ln A\left(t_{i}\right)$ on regular graph paper). If this gives a linear graph, accept the hypothesis, otherwise reject it. (Note: you could calculate R^{2} from the linear regression and reject the hypothesis if R^{2} is not above .5 say)
2. By Definition $W^{\prime}(t)=\lim _{h \rightarrow 0} \frac{W(t+h)-W(t)}{h}$ gives the growth rate of the fish at a particular instant t , in kg/month and $\mathrm{W}^{\prime}(2)$ is approximately $.25 \mathrm{~kg} /$ month

3. $(\mathrm{a}) \mathrm{y}^{\prime}(\mathrm{t})=4 \ln (2 t+1)+8 t /(2 t+1)$
(b) $g^{\prime}=\frac{1}{(x+1)^{2}}$
(c) $f^{\prime}=\frac{-6(3 y+1)}{\left(3 y^{2}+2 y\right)^{4}}$
(d) $y^{\prime}(t)=-4(\sin 4 t) e^{\cos 4 t}$

