
Math 151 Introduction to Eigenvectors

The motivating example we used to describe matrixes was landscape change and vegetation suc-
cession. We chose the simple example of Bare Soil (B), being replaced by Grasses (G) and then
these being replaced by Shrubs. Describing a landscape at a particular time we saw could be
done using a vector that gav ethe area inkm2 (or fraction of total area which is then a number
between 0 and 1) as a vector with three entries( B G S ) giving the fraction of the landscape of
each species. If these were fraction of area, then the vector of numbers would sum to one. If
these were area in each successional type, then they would sum to the total area on the landscape.

We next described how this vector v= ( B G S ) could change through time due to the process of
succession, and noted that this can be described mathematically by multiplying a vector times a
matrix which specifies over the underlying time period (which could be a decade) how much of
each type changes to each other type. So if the matrix is

M =





. 4

. 5

.1

0

.8

. 2

0

0

1






then this says that each decade 40% of the bare soil stays bare soil, 50% changes to grass and
10% changes to shrub. It also says that 80% of the grass area stays grass and 20% becomes shrub
in the course of a decade. If an area becomes shrub, then it stays shrub.

If we start out with a certain area in each successional stage, then we can use this matrix to
project forward in time one decade by multiplying the matrix times the vector for the current
stage distribution. That is, if yt gives the vector of area in each stage at decadet, then

yt + 1 = M yt

This is called a matrix equation since it is an equation that has a matrix in it and it allows us to
project from one decade forward to the next decade.

So for example, if we start out with 100km2 in a region that is bare soil, and no grass or shrub,
then
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gives the initial distribution of stages at time 0 and we can get the distribution of stages at time 1
decade using

y1 = M y0

or
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so that after one decade this region has 40km2 in bare soil, 50km2 in grass and 10km2 in shrub.
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Doing this again we can get how much of the landscape is in each time at decade 2 from

y2 = M y1 = M2 y0 =
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We can continue to multiply the matrixM times each decades vector to get the next decades vec-
tor. Look at the entries in the vector y2 and note that they sum to 100. This is because there is no
land craeted or destroyed here - each unit of area must remain as one of the three types B, G or S.
What do you think will happen if we continue to findYt for larger and larger values oft? Yes,
you are correct, eveything eventually becomes shrub, and so this means that the vector yt gets
closer and closer to the vector
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We will see later in the course that the mathematical way to state this is
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This is a fancy way of saying that eventually all the area becomes shrub. In this case it was pretty
easy to intuit what would happen in the long-term in this landscape. This would not be as easy to
determine if we modify the situation as we mentioned earlier to look at the effect of fire (fire is
only one kind of disturbance in this system that could cause the system to switch back to bare
soil - other forms of distubance in natural systems that could cause similar effects are wind-
storms, hurricanes, and disease. So our objective in this section of the course is to develop a
mathematical way to see what happens after a long-time in a structured system. We are using the
example of succession, but we’ll also see that exactly the same methods work to determine the
long-term fraction os a population in each of a set of age ranges, which is part of the area of
demography we hav ealready mentioned.

Note that if we start out a landscape with 100 km2 in shrub, then after a decade we get
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which means the landscape doesn’t change at all over the decade - everything remains in the
shrub stage. We call the vector
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an eigenvector for the matrixM because if we start at time 0 at this eigenvector of distributions
of stages, we stay there forever. This is an equilibrium state for the system of succession - once
there we stay there forever. More than that, in this situation we can show that no matter what dis-
tribution of initial states we start at, the system eventually approaches this eigenvector - in this
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case we say it is stable.

In general, we will say thatv is an eigenvector for a matrixA if t hee is some constantλ so that

λ v = A v

and we say thatv has associated eigenvalue λ . in the above situation, the vector
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is an eigenvector with eigenvalue λ = 1.

If we were to change the matrixM to include the effect of fire, one case we discussed is
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If we start out with an initial distribution y0 , then we can see by iterating that

yt = Nt y0

For example, if we start out with 100 km2 in bare soil then using Matlab as a tool to calculate
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So that after a long time the vector of states approaches
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and if we start out at this state we see that
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so thatv is an eigenvector (and its eigenvalue is one).

There are a variety of methods to find eigenvectors and eigenvalues. One way to find an eigen-
vector is numerically. We can use Matlab to find for any matrix P, the matrixPn, where nis a
large number (say 100), then multiply this times the initial vector for the landscape,y0, to get a
numerical answer for the long-term state of the landscape.If the initial vector y0 contained the
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fraction of the landscape in each vegetation type, thenP100 y0 will be a vector giving the long-
term fraction of the landscape in each vegetation type. If the initial vector y0 rather represents the
number of hectares or acres of each type, then divide each term inP100 y0 by the sum of the com-
ponents of this vector to get the long-term fraction in each state (the eigenvector is specified only
up to a constant multiple).

A second way to get the eigenvector is to realize that it arises when the long term structure of the
system doesn’t change. This is expressed asP y = λy whereλ is a constant that represents how
the vector of vegetation types increases or decreases through one time period. In our case of a
fixed landscape, land area is neither created nor destroyed, so there is no change from one time
period to another and soλ = 1. This means to find the eigenvector all we need to do is find a vec-
tor y that satisfiesP y = y. This is easy to do using simple algebra for small matrices, but for
larger ones the mathematics becomes more difficult. In this case you either use the theory of
determinants, or else use Matlab to find the answer.

In this class, we expect that you will be able to compute by hand the eigenvectors and eigenval-
ues only for the simplest matrices - 2x2 ones. Consider the 2x2 matrix
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and lets look at the equations arising from

P y = λ y
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Then this holds ifa y1 + b y2 = λ y1 and cy1 + d y2 = λ y2. In order for these to both hold,we
need

y1 =
b

λ − a
y2

and
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λ − d

c
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So the only way these can both hold is ify1 = y2 = 0 (which is not an interesting case) or if
b

λ − a
=

λ − d

c
. This is a quadratic equation inλ :

λ2 − ( a + d ) λ + a d− b c = 0

and this equation is called the characteristic equation for this matrix. We call a+ d the Trace of
the matrix P ( Tr(P) ) anda d− b c  the Determinant of the matrix P ( Det( P) ). By solving this
quadratic for the roots, we find the eigenvaluesλ (there will be two in general for a 2x2 matrix).
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To find the eigenvector, we plug in one of theseλ values to find the ratio ofy1 to y2, and this
gives us the eigenvector up to a constant.

Note that in the case of our succession model where the total area of the landscape doesn’t
change, we have λ = 1, we must have 1− ( a + d ) + a d− b c = 0. The landscape transition matrix
can be written in this case as
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because the columns of the matrix P sum to one (soa + c = 1 and b+ d = 1). So Tr(P) =
a + 1 − b and Det(P) =a (1 − b ) − b (1 − b ) and in this case then
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gives the eigenvector. Normalize this so they sum to 1.

As an example, consider the matrix
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then Tr(P) = 6 and Det(P) = 5 so the chaarcteristic equation is

λ2 − 6 λ + 5 = 0

so the eigenvalues areλ = 1 and λ = 5 with eigenvector





1

−3





for λ = 1 and eigenvector
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for λ = 5. Note that only the eigenvector for λ = 5 can be normalized, since the eigenvector for
λ = 1 has a negative element. For λ = 5, the sum of the elements of the eigenvector is 2 so divide
each of the elements by 2 to get the normalized eigenvector for λ = 5 which is
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