## Answers to Sample Final Exam:

1. (a) $\log \mathrm{R}=\mathrm{a} \log \mathrm{W}+\log \mathrm{b}$ where $\mathrm{a}=1.8$ and $\log \mathrm{b}=34$.
(b) $R=34 W^{1.8}$
(c) $2^{1.8}=3.5$
2. $\lambda=2$ has eigenvector $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and $\lambda=4$ has eigenvector $\left[\begin{array}{l}1 \\ 1\end{array}\right]$
3. (a) $\left[\begin{array}{ccc}8 & 16 & 25 \\ 0 & 5 & 6 \\ 2 & 9 & 7\end{array}\right]$
(b)
$\left[\begin{array}{c}9 \\ 11\end{array}\right]$
(c) not defined
4. (a) $\left[\begin{array}{c}J_{t+1} \\ A_{t+1}\end{array}\right]=\left[\begin{array}{cc}0 & 4 \\ .25 & 0\end{array}\right]\left[\begin{array}{c}J_{t} \\ A_{t}\end{array}\right]$ for the case in which you assume the sex ratio is $50: 50$ and females produce booth male and female offspring. If you assume all 8 offspring are female, then the matrix becomes $\left[\begin{array}{cc}0 & 8 \\ .25 & 0\end{array}\right]$.
(b) $\left[\begin{array}{c}12 \\ 1\end{array}\right]$ so it returns to the same in two time periods. If you use the second matrix above (with an 8 rather than a 4) you get $\left[\begin{array}{c}24 \\ 2\end{array}\right]$
(c) The eigenvalues are 1 and -1 for the first case, so long term growth rate is 1 , but this means the population actually oscillates every two time periods returning to the same structure, with a ratio of $12: 1$ juveniles to adults as at the start. For the second matrix, the eigenvalues are $\sqrt{2}$ and $-\sqrt{2}$ and the long term ratio of juveniles to adults is $4 \sqrt{2}: 1$.
5. (a) . 9 (b) . 6 (c) . 1
6. (a) $1 / 16$ (b) $1 / 28$
7. (a). 52 (b) $1 / 13$ (c) $1 / 3$
8. (a) $x_{n}=(3.5) 3^{n}+.5$
(b) $x_{n}=5 n+2$
(c) $x_{n}=(2) 3^{n}-4(-1)^{n}+4$
(d) $x_{n}=(2) 3^{n}-2^{n}+4$
9. 1-P[No 5's at all $]=1-125 / 216=.422$
10. (a) $x_{n}=x_{0}(1.3)^{n}$
(b) sometime during the 4th day - solving gives $\mathrm{n}=4.19$, so if you check only daily, the tripling will be observed on day 5 .
11. (a) $1 / 3$ (b) $1 / 16$ (c) not defi ned (d) $\sqrt{3}$
