Math 151 - Fall 2004-Project \#4

The Leslie Population Model in a Random Environment:

Consider the Leslie model of a population with three classes (call them J for juveniles, Y for young adults, and A for adults) used in Project \#3. Suppose the population starts at time zero with 40% in the J class, 35% in the Y class and 25% in the A class and there is a total of 100 individuals present then. Suppose that the population projection matrix is:

$$
\mathrm{P}=\begin{array}{ccc}
0 & 1 . & \mathrm{F} \\
.5 & 0 & 0 \\
0 & \mathrm{q} & 0
\end{array}
$$

where the parameter q is calculated by
$(($ your age in years $) / 50+($ the number of your birthmonth $) / 12) / 2$.
Thus if you were born in July of 1967, so you are 25 years old,

$$
\mathrm{q}=(25 / 50+7 / 12) / 2=.542 \quad \text { (use three significant digits, please). }
$$

Now suppose the adult fecundity F varies from year to year according to a uniform distribution, with an average value of 5 and with a deviation about that, so that the fecundity varies over the interval (F-deviation, F+deviation)

Making use of the Matlab code in the file ranleslie.m, do the following:
Calculate your value of p and for values of deviation of $1,2,3$, and 4 :
(a) Determine the population size at the end of a time period of length 101, repeat the experiment 200 times and compute the mean and standard deviation of population size at time 101, and show a histogram of it's values.
(b) Determine the geometric mean growth rate of the population's total size by computing this over the single time-step growth rates from time 20 to time 100, repeat the experiment 200 times and compute the mean and standard deviation of the geometric mean growth rate, and show a histogram of it's values.
(c) Summarize your results in a chart for the cases of deviation $=1,2,3,4$, showing the means and standard deviations computed in (a) and (b). Discuss these results and in particular describe how a larger random variation in fecundities affects the population size and the geometric growth rate.

