Exponentials, logarithms and rescaling of data

Math 151 : Sept 9, 2003
Scott Sylvester substituting for Lou Gross

From last class

- Correlation coefficient
- $-1 \leq \square \leq 1$, always

$$
\square=\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}}
$$

- $f(x)=a^{x}$, exponential
- $\mathrm{f}(\mathrm{x})=\log _{\mathrm{a}} \mathrm{x}, \log$ arithm
- $f(x)=a x^{b}$, allometric function

Motivation

- There are lots of non-linear phenomena in the world:
Population growth
Relationship between different parts/aspects of an organism (allometric relationships)
The number of species found in a given area (species-area relationships)
Radio active decay
Many others
- As it turns out exponentials, logs and allometric functions are useful in understanding these phenomena
- Population growth is a classic example Algae : cell division
Geometric growth

Population Size vs. time

Exponentials $f(x)=a^{x}, a>0$

$a>1$
exponential increase

$$
\lim _{x \square \square} a x=0
$$

$0<a<1$
exponential decrease
$\lim a x=0$
$x \square+$

- Special case, a = 1

- $f(x)=a^{x}$ is one-to-one. For every x value there is a unique value of $f(x)$.
- This implies that $f(x)=a^{x}$ has an inverse.
- $f^{-1}(x)=\log _{a} x$, logarithm base a of x.

- $\log _{\mathrm{a}} \mathrm{x}$ is the power to which a must be raised to get X .
- $y=\log _{\mathrm{a}} \mathrm{x}$,
- $\mathrm{a}^{\mathrm{y}}=\mathrm{x}$
- $f\left(f^{-1}(x)\right)=a^{\log _{a} x}=x$, for $x>0$
- $f^{-1}(f(x))=\log _{a} a^{x}=x$, for all x.
- There are two common forms of the log fn.
$\mathrm{a}=10, \log _{10} \mathrm{x}$, commonly written a simply $\log \mathrm{x}$ $a=e=2.71828 \ldots, \log _{e} x=\ln x$, natural log.
- $\log _{\mathrm{a}} \mathrm{x}$ does not exist for $\mathrm{x} \leq 0$.

Laws of logarithms

- $\log _{a}(x y)=\log _{\mathrm{a}} x+\log _{a} y$
- $\log _{\mathrm{a}}(\mathrm{x} / \mathrm{y})=\log _{\mathrm{a}} \mathrm{x}-\log _{\mathrm{a}} \mathrm{y}$
- $\log _{\mathrm{a}} \mathrm{x}^{k}=\mathrm{k} \cdot \log _{\mathrm{a}} \mathrm{x}$
- $\log _{\mathrm{a}} \mathrm{a}=1$
- $\log _{\mathrm{a}} 1=0$
- Example $15.7: 2^{3 x}=1.7$

$$
\begin{aligned}
& \log _{10} 2^{3 x}=\log _{10} 1.7 \\
& 3 x \log _{10} 2=\log _{10} 1.7 \\
& x=\frac{\log _{10} 1.7}{3 \log _{10} 2} \\
& x=\frac{0.2304}{3 * 0.301}=0.2551
\end{aligned}
$$

- Example 15.8 : Radioactive decay

A radioactive material decays according to the law $\mathrm{N}=5 \mathrm{e}^{-0.4 \mathrm{t}}$

When does $\mathrm{N}=1$?
For what value of t does $\mathrm{N}=1$?

$$
\begin{aligned}
& 1=5 e^{[0.4 t} \\
& 1 / 5=e^{[0.4 t} \\
& \ln (0.2)=\ln \left(e^{\square 0.4 t}\right) \\
& \ln (0.2)=\square 0.4 t \\
& t=\ln (0.2) / \square 0.4 \\
& t=\Pi 1.6909 / \sqcap 0.4=4.023 \text { months }
\end{aligned}
$$

Trick for computing $\log _{\mathrm{a}} \mathrm{x}$ when you calculator doesn't have $\log _{\mathrm{a}}$

$$
\begin{aligned}
& \log _{a} x=\frac{\log _{10} x}{\log _{10} a} \\
& \log _{a} x=\frac{\ln x}{\ln a}
\end{aligned}
$$

Example:

$$
\log _{2} 64=\frac{\ln 64}{\ln 2}=\frac{4.1588 \ldots}{0.6931 \ldots}=6
$$

- general exponential form:

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\square \square^{\mathrm{x}} \\
& \mathrm{y}=\square \square^{\mathrm{x}}
\end{aligned}
$$

Then

$$
\begin{gathered}
\ln (\mathrm{y})=\ln \square \square^{\mathrm{x}} \\
\ln (\mathrm{y})=\ln \square+\ln \square^{\mathrm{x}} \\
\ln (\mathrm{y})=\ln \square+\mathrm{x} \ln \square \\
\text { Let } \mathrm{b}=\ln \square, \text { and } \mathrm{m}=\ln \square, \mathrm{Y}=\ln \mathrm{y} \\
\mathrm{Y} \quad=\mathrm{b} \quad+\mathrm{mx}
\end{gathered}
$$

which is the equation of a straight line.

Transform (some) non-linear data so that the transformed data has a linear relationship.

Special exponential form : $\mathrm{f}(\mathrm{x})=\square \mathrm{e}^{\mathrm{mx}}$

Consider the algae growth example again. How do you know when a relationship is exponential?

Time t	Number of Cells	$\ln (\mathrm{N})$
0	1	0
1	2	0.69314718
2	4	1.38629436
3	8	2.07944154
4	16	2.77258872
5	32	3.4657359

Regular plot

$\mathrm{N}=\square \square^{\mathrm{t}}$

$\ln (N)=m t+b$

- Fit a line to the transformed data
- Estimate the slope and intercept using the least squares method.
- $\mathrm{Y}=\mathrm{mx}+\mathrm{b}$
- $\mathrm{b} \sim 0, \mathrm{~m}=0.693$.
- Extimate \square and \square.
$\mathrm{b}=\ln \square \quad->\square=\mathrm{e}^{\mathrm{b}}=\mathrm{e}^{0}=1$
$\mathrm{m}=\ln \square \quad->\square=\mathrm{e}^{\mathrm{m}}=\mathrm{e}^{0.693 . .}=2.0$
$\mathrm{N}=2^{\mathrm{t}}$

Example 17.9 : Wound healing rate

Time t (days)	Area $A\left(\mathrm{~cm}^{\wedge} 2\right)$	$\ln (\mathrm{A})$
0	107	4.67282883
4	88	4.47733681
8	75	4.31748811
12	62	4.12713439
16	51	3.93182563
20	42	3.73766962
24	34	3.52636052
28	27	3.29583687

Regular plot

Semilog plot

- How to make a semilog plot?
- Use the semilog(x, y) command in matlab
- Take the log of one column of data and plot the transformed data against the untransformed data
- Estimate slope and intercept using least squares
- $\mathrm{Y}=\mathrm{b}+\mathrm{mx}$
- $\mathrm{m}=-0.048$
- $\mathrm{b}=4.69$
- $b=\ln \square->\square=e^{b}=e^{4.69}=$ 108.85
- $\mathrm{m}=\ln \square->\square=\mathrm{e}^{\mathrm{m}}=\mathrm{e}^{-}$ $0.048=0.953$
- $\mathrm{A}=108.85(0.953)^{\mathrm{t}}$

$f(x)=b x^{a}$

- Allometric relationships
- Descibe the relationship between different aspects of a single organism:
Length and volume
Surface area and volume
- Typically $x>0$, since negative quantities don't have biological meaning.
$a>1$

$\mathrm{a}=1$

$$
a<0
$$

- Example : It has been determined that for any elephant, surface area of the body can be expressed as an allometric function of trunk length.
- For African elephants, $\mathrm{a}=0.74$, and a particular elephant has a suface area of $20 \mathrm{ft}^{2}$ and a trunk length of 1 ft .
- What is the surface area of an elephant with a trunk length of 3.3 ft ?
- $x=$ trunk length
- $y=$ surface area
- $y=b x^{a}=b x^{0.74}$
- $20=b(1)^{0.74} \quad 20=b$
- $y=20 x^{0.74}$
- $\mathrm{y}=20(3.3)^{0.74}=48.4 \mathrm{ft}^{2}$
- How do you know when your data has allometric relationship?
- Example 17.10

length $L(\mathrm{~cm})$	weight W (lbs)
70	14.3
80	21.5
90	30.8
100	42.5
110	56.8
120	74.1
130	94.7
140	119
160	179
180	256

Regular plot

Semilog plot

- How to make a log-log plot
- Use the $\log \log (x, y)$ command in matlab
- Take the log of both columns of data and plot the transformed columns.
- $Y=b x^{a}$
- $\ln (y)=\ln \left(b x^{a}\right)$
- $\ln (y)=\ln (b)+\ln \left(x^{a}\right)$
- $\ln (y)=\ln (b)+a \ln (x)$
- Let
$\mathrm{Y}=\ln (\mathrm{y})$
$X=\ln (\mathrm{x})$
$B=\ln (b)$
Then
$Y=B+a X$

Which is the equation for a straight line.

