Mathematical Modelling Weight Gain and Weight Loss in Children and Adolescents

Nancy F. Butte, Ph.D.

Children’s Nutrition Research Center
Baylor College of Medicine
Energy Cost of Weight Gain

- Conventionally, energy cost of growth has not been based on a dynamic mathematical model
 - ECG = Energy deposition + Energy cost of synthesis

- Energy deposition depends on the accurate assessment of body composition
 - Chemical maturation and differential contribution of various organs to weight gain influence ECG
 - Proportion of protein to fat tissue varies with age, gender and maturation

- Energy cost of synthesis depends on the efficiency of conversion of dietary substrates into tissue constituents
Energy Cost of Growth

- Theoretical approach based on stoichiometry of biochemical reactions
 - Chemical composition of organs and tissues to calculate increases in protein, TG, phospholipids, cholesterol, glycogen, DNA, RNA (Hommes 1975)
 - Energy cost of synthesis: 0.3 kcal/g gained
 - Energy deposition (14% P, 10% F): 1.6 kcal/g gained
 - Total ECG: 1.9 kcal/g gained
 - 100% energetic efficiency (metabolic interconversions, futile cycling, ion leakage, etc.)

- Empirical data from balance studies in fast-growing infants/children
 - Slope of metabolizable energy intake (MEI) regressed on weight gain
 - Difference between MEI and EE/weight gain
 - Sum of energy deposition and energy synthesis

- Empirical data based on body composition studies
 - Energy deposition estimated from energetic equivalents for protein and fat accretion
Modelling Weight Gain

- Christiansen et al. (2005) published a dynamic mathematical model of weight gain in adults which integrated the increasing energy required to maintain the body and sustain weight gain.

- Butte NF, Christiansen E and Sørensen TIA (2007) developed mathematical model based on empirical data and human energetics to predict the total energy cost of weight gain and obligatory increase in energy intake and/or decrease in physical activity level associated with weight gain in children and adolescents.
 - energy partitioning into fat and lean tissue during growth
 - energetic efficiency of tissue synthesis
 - higher basal energy expenditure in children.

Obesity, 2007;15:3056-3066
VIVA LA FAMILIA STUDY: Baseline Anthropometry

<table>
<thead>
<tr>
<th></th>
<th>Boys</th>
<th></th>
<th>Girls</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nonobese</td>
<td>Obese</td>
<td>Nonobese</td>
<td>Obese</td>
</tr>
<tr>
<td>N</td>
<td>228</td>
<td>281</td>
<td>276</td>
<td>240</td>
</tr>
<tr>
<td>Age (y)</td>
<td>11 ± 4*</td>
<td>11 ± 4</td>
<td>10 ± 5</td>
<td>11 ± 4</td>
</tr>
<tr>
<td>Weight (kg) †</td>
<td>43 ± 20a</td>
<td>71 ± 30b</td>
<td>38 ± 18a</td>
<td>64 ± 25c</td>
</tr>
<tr>
<td>Height (cm) ‡</td>
<td>143 ± 23</td>
<td>148 ± 19</td>
<td>134 ± 21</td>
<td>143 ± 17</td>
</tr>
<tr>
<td>BMI (kg/m²) †</td>
<td>20 ± 4a</td>
<td>31 ± 7b</td>
<td>20 ± 4a</td>
<td>30 ± 6b</td>
</tr>
<tr>
<td>BMI (Z-score) §</td>
<td>0.7 ± 0.7</td>
<td>2.4 ± 0.4</td>
<td>0.6 ± 0.8</td>
<td>2.2 ± 0.3</td>
</tr>
</tbody>
</table>

*Mean±SD
†Age (P=0.001), Gender x BMI status (P=0.03)
‡Age, Gender, BMI status (P=0.001)
§Gender, BMI status (P=0.002)

Butte NF Am J Clin Nutr 2006;84:646-54
Anthropometric Changes

<table>
<thead>
<tr>
<th>Boys</th>
<th>Girls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nonobese</td>
</tr>
<tr>
<td>N</td>
<td>228</td>
</tr>
<tr>
<td>Weight gain (kg/y) †</td>
<td>4.7 ± 2.5 *</td>
</tr>
<tr>
<td>Height (cm/y) ‡</td>
<td>5.4 ± 2.4</td>
</tr>
<tr>
<td>BMI (units/y)</td>
<td>0.9 ± 1.1</td>
</tr>
<tr>
<td>BMI z (SD/y) §</td>
<td>0.10 ± 0.36</td>
</tr>
</tbody>
</table>

*Mean ± SD

† Adjusted for age, age² and Tanner stage, sex and BMI status (P<0.05)

‡ Adjusted for age, age² and Tanner stage, sex (P=0.001)

§ Adjusted for age, age² and Tanner stage, BMI status (P=0.001)
1-y Changes in Weight Relative to Fels Reference

![Graph showing weight change relative to Fels Reference for boys and girls.](image)
Changes in Body Composition by DXA

<table>
<thead>
<tr>
<th></th>
<th>Boys</th>
<th></th>
<th>Girls</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nonobese</td>
<td>Obese</td>
<td>Nonobese</td>
<td>Obese</td>
</tr>
<tr>
<td>N</td>
<td>228</td>
<td>281</td>
<td>276</td>
<td>240</td>
</tr>
<tr>
<td>FFM (kg/y) †</td>
<td>3.5 ± 2.0</td>
<td>5.1 ± 2.3</td>
<td>2.2 ± 1.4</td>
<td>3.6 ± 2.0</td>
</tr>
<tr>
<td>FM (kg/y) †</td>
<td>1.2 ± 1.8</td>
<td>3.1 ± 2.7</td>
<td>1.7 ± 1.5</td>
<td>3.2 ± 2.3</td>
</tr>
<tr>
<td>%FM (%/y)</td>
<td>0.7 ± 3.5</td>
<td>0.3 ± 3.1</td>
<td>1.8 ± 3.0</td>
<td>1.0 ± 2.7</td>
</tr>
</tbody>
</table>

*Mean±SD
† Adjusted for age, age² and Tanner stage, sex and BMI status (P<0.05)
Energy Storage

- Non-overweight boys
- Overweight boys
- Non-overweight girls
- Overweight girls

Age (y)

FM (kg/y)

Energy Storage (kcal/d)

Overweight girls

Overweight boys

Non-overweight boys

Non-overweight girls

Age (y)
Specification of the Model

- BM can be partitioned into FM and FFM, determined by the data for each child.

- FM and FFM each has a specific energy content, cf and cff, and a specific basal energy expenditure, kf and kff.

- The conversion of surplus energy intake into FM and FFM requires specific amounts of energy, given by the efficiencies ef and eff which are independent of energy imbalance and composition of food intake.

- Total energy expenditure = $CE + DIEE + PAL \cdot BMR$

- The fraction of fat added in new tissue (fr) is independent of BM or weight gain.

- The fraction of fat added in new tissue (fr) is determined as the median for each gender-Tanner stage group.

- BM increases at a constant rate during the period.
Value of Constants

kf, kff: tissue-specific basal energy expenditure

- EE per kg FM = 6.45 kcal•kg\(^{-1}\)•d\(^{-1}\)
- EE per kg FFM =
 - boys: 44.6, 37.9, 33.8, 30.8, 28.9 kcal•kg\(^{-1}\)•d\(^{-1}\) (Tanner 1-5)
 - girls: 48.2, 40.2, 34.7, 31.4, 31.0 kcal•kg\(^{-1}\)•d\(^{-1}\) (Tanner 1-5)

cf, cff: energy storage

- EE per kg FM = 9.25 kcal/g
- EE per kg FFM = 1.07 kcal/g

ef, eff: efficiency energy conversion

- Fat = 0.85
- Protein = 0.42

\[
K_{\text{coef}} = k_f f_r + k_{ff} (1 - f_r) \\
C_{\text{coef}} = c_f f_r + c_{ff} (1 - f_r) \\
E_{\text{coef}} = c_f f_r / e_f + c_{ff} (1 - f_r) / e_{ff}
\]
Measured Fraction of FM in Added Tissue

- Non-overweight boys
- Overweight boys
- Non-overweight girls
- Overweight girls

Median Fraction of Fat in Added Tissue vs Tanner Stage
Measured Basal Energy Expenditure of FFM

Tanner Stage

eff (kcal•kg\(^{-1}\)•d\(^{-1}\))

0
10
20
30
40
50
60
70
80

1
2
3
4
5

Tanner Stage
Basal Metabolic Rate

\[BMR_{ss,year} = (k_f FM(0) + k_ff FFM(0)) \]
Energy Cost of Weight Gain

1. Energy stored in added tissue (C)
 \[\Delta C = (c_f f_r + c_{ff} (1 - f_r)) \Delta BM = C_{coef} \Delta BM \]

2. Conversion energy (CE)
 \[_CE = (c_f f_r / e_f + c_{ff} (1 - f_r) / e_{ff}) \Delta BM - \Delta C\]

3. EEss + EE added tissue
 \[EE_{year} = \int_0^{1y} PAL \cdot BMR(t) \, dt \]
 \[= PAL \int_0^{1y} (k_f FM(t) + k_{ff} FFM(t)) \, dt \]
 \[= EEss + PAL \int_0^{1y} (k_f f_r + k_{ff} (1 - f_r)) \Delta BM \, t \, dt \]
 \[= EEss + \frac{1}{2} 365 PAL K_{coef} \Delta BM \]
Energy Cost of Growth and Energy Intake

1. Energy cost of growth in 1 year:

\[ECG_{\text{cost,year}} = \frac{(\Delta C + CE + EE_{\text{year}} - EE_{\text{ss,year}})}{0.9} \]
\[= Ecoef + \frac{1}{2} 365 \text{ PAL K}_{\text{coef}} \Delta BM / 0.9 \]

2. Total energy intake in 1 year with increase body mass:

\[EI_{\text{cost,year}} = \frac{(\Delta C + CE + EE_{\text{year}})}{0.9} \]
Predicted Total Energy Cost of Weight Gain

Total energy cost of weight gain (kcal/d)

- **TEF**
- **EE-EEss**
- **CE**
- **Delta C**

Nonobese Boys
- PAL 1.5: 50 kcal/d
- PAL 1.75: 100 kcal/d

Obese Boys
- PAL 1.5: 100 kcal/d
- PAL 1.75: 200 kcal/d

Nonobese Girls
- PAL 1.5: 50 kcal/d
- PAL 1.75: 100 kcal/d

Obese Girls
- PAL 1.5: 100 kcal/d
- PAL 1.75: 200 kcal/d
Predicted Total Energy Intake

- **Nonobese boys**: PAL 1.5, PAL 1.75
- **Obese boys**: PAL 1.5, PAL 1.75
- **Nonobese girls**: PAL 1.5, PAL 1.75
- **Obese girls**: PAL 1.5, PAL 1.75

Energy intake (kcal/d) vs. PAL
Total Energy Cost of Weight Gain

- PAL 2.0
- PAL 1.75
- PAL 1.5

Total energy cost of weight gain (kcal/d) vs. weight gain (kg/y).
<table>
<thead>
<tr>
<th></th>
<th>Boys Nonobese</th>
<th>Boys Obese</th>
<th>Girls Nonobese</th>
<th>Girls Obese</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAL (t=0 y)</td>
<td>1.43</td>
<td>1.41</td>
<td>1.44</td>
<td>1.43</td>
</tr>
<tr>
<td>PAL (t=0.25 y)</td>
<td>1.41</td>
<td>1.38</td>
<td>1.41</td>
<td>1.37</td>
</tr>
<tr>
<td>PAL (t=0.5 y)</td>
<td>1.37</td>
<td>1.33</td>
<td>1.38</td>
<td>1.34</td>
</tr>
<tr>
<td>PAL (t=1.0 y)</td>
<td>1.30</td>
<td>1.25</td>
<td>1.33</td>
<td>1.27</td>
</tr>
</tbody>
</table>

*Median (10th – 90th percentile)
Steady state is chosen at PAL₀ = 1.5
Findings

1. Specific basal energy expenditure for FFM ($effm$) depends on gender and Tanner stage.

2. Fraction of fat in new tissue (fr) depends on gender and Tanner stage, not BM, BMI status or rate of weight gain.

3. Median energy imbalance required to produce observed 1-y weight gains:
 - 244 (93-448) kcal/d at $PAL=1.5$
 - 267 (101-485) kcal/d at $PAL=1.75$

4. Energy storage equal to 24-36% of total energy cost of weight gain.

5. If physical activity is constant, total energy intake to result in 1-y weight gains:
 - 2695 (1890-3730) kcal/d at $PAL=1.5$
 - 3127 (2191-4335) kcal/d at $PAL=1.75$

6. If energy intake is constant, decrease in physical activity to result in 1-y weight gains:
 - PAL drops 0.22 (0.08-0.34) units over 1-y
 - Equivalent 60 (18-105) min/d walking 2.5 mph
Conclusion

- The total energy cost of weight gain is substantially higher than estimates which do not integrate energy needs over time and thus ignore the energy required to support the increased BM.
- The obligatory total energy intake or decline in physical activity required for weight gain is also substantially greater than estimated energy requirements for the development of childhood obesity.
Modelling Weight Loss in Extremely Obese Adolescents in Response to Roux-en-Y Gastric Bypass Surgery
TEENERGY Study

Study Objective:

➢ To investigate energetic responses to RYGB surgery in extremely obese adolescents, ages 13-19 y.

Specific Aims:

- To monitor changes in weight and body composition using a multicomponent model.
- To measure changes in 24-h total energy expenditure and fuel utilization using room respiration calorimetry.
- To measure changes in free-living energy intake, TEE and PAL using 24-h diet recalls, and heart rate/accelerometer monitoring.
- To predict energy intakes associated with changes in body weight and body composition and adaptations in energy expenditure using the Hall Mathematical Model.
TEENERGY Study

Subjects:
- Extremely obese adolescents opting for RYGB surgery or self-management (controls)

Inclusion criteria:
- Ages of 13 to 18 y
- Tanner stage IV or V
- BMI ≥ 50 or BMI ≥ 40 with serious comorbidities such as T2D, obstructive sleep apnea, or pseudotumor cerebri, hypertension, dyslipidemia, nonalcoholic steatohepatitis

Repeated measures design:
- Studied at baseline, and 1.5 and 6 months post-surgery
TEENERGY Study

<table>
<thead>
<tr>
<th>Anthropometry:</th>
<th>Weight, height, circumferences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body composition:</td>
<td>Total body water by deuterium dilution</td>
</tr>
<tr>
<td></td>
<td>Body density by air displacement</td>
</tr>
<tr>
<td></td>
<td>plethysmography (BodPod)</td>
</tr>
<tr>
<td>Energy expenditure:</td>
<td>24-h calorimetry</td>
</tr>
<tr>
<td>Dietary intake:</td>
<td>24-h multiple-pass diet recall</td>
</tr>
<tr>
<td>Physical activity/TEE:</td>
<td>7-d Actiheart monitoring</td>
</tr>
<tr>
<td>Modelling:</td>
<td>Cross-sectional Times Series Model</td>
</tr>
<tr>
<td></td>
<td>Hall Mathematical Model of Human Metabolism</td>
</tr>
</tbody>
</table>
Baseline Anthropometry and Body Composition

<table>
<thead>
<tr>
<th></th>
<th>RYGB</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Age (y)</td>
<td>16.6 ± 1.1*</td>
<td>14.5 ± 1.1</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>1/7</td>
<td>2/2</td>
</tr>
<tr>
<td>Race/ethnicity (W/B/H)</td>
<td>2/3/3</td>
<td>0/4/0</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>157 ± 43*</td>
<td>136 ± 31</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>58 ± 12</td>
<td>50 ± 11</td>
</tr>
<tr>
<td>Waist circum (cm)</td>
<td>137 ± 22</td>
<td>125 ± 22</td>
</tr>
<tr>
<td>TBW (kg)</td>
<td>54 ± 10</td>
<td>50 ± 6</td>
</tr>
<tr>
<td>FFM (kg)</td>
<td>72 ± 14</td>
<td>67 ± 8</td>
</tr>
<tr>
<td>FM (kg)</td>
<td>86 ± 30</td>
<td>68 ± 24</td>
</tr>
<tr>
<td>FM (%)</td>
<td>54 ± 4</td>
<td>49 ± 8</td>
</tr>
</tbody>
</table>

*Mean ± SD
Body Weight

Phase 1:
- 300 g/d
- 15 kg total

Phase 2:
- 152 g/d
- 18.8 kg total

RYGB - yellow
Controls - blue
RYGB: Fat Free Mass

Fat Free Mass (kg) vs Months post-surgery.
RYGB: Fat Mass

0 to 1.5 mo post-surgery:
WT loss = 48% FM
~5000 kcal/kg

1.5 to 6 mo post-surgery:
WT loss = 75% FM
~7200 kcal/kg
CNRC Respiration Room Calorimeters

Calorimeter Protocol
4:00 pm Begin
5:30 pm Dinner
11:00 pm Lights out
7:30 am BMR
8:30 am Blood draw
9:00 am Breakfast
10:30 am Treadmill walk
12:00 pm Lunch
2:00 pm Treadmill walk
3:00 pm Snack
4:00 pm End
24-h Energy Expenditure and HR

- EE baseline
- EE post-baseline
- HR baseline
- HR post-baseline

Energy Expenditure (kcal/min) vs. Time (minutes)

Heart Rate (bpm)
RYGB: 24-h Calorimetry

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>1.5 mo</th>
<th>6 mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEE (kcal/d)</td>
<td>3162 ± 489*</td>
<td>2444 ± 404</td>
<td>2433 ± 420</td>
</tr>
<tr>
<td>BMR (kcal/d)</td>
<td>2309 ± 389</td>
<td>1872 ± 354</td>
<td>1809 ± 274</td>
</tr>
<tr>
<td>Sleep EE (kcal/min)</td>
<td>1.56 ± 0.29</td>
<td>1.20 ± 0.21</td>
<td>1.16 ± 0.17</td>
</tr>
<tr>
<td>PAL (TEE/BMR)</td>
<td>1.38 ± 0.06</td>
<td>1.32 ± 0.10</td>
<td>1.34 ± 0.11</td>
</tr>
<tr>
<td>RQ</td>
<td>0.85 ± 0.02</td>
<td>0.78 ± 0.01</td>
<td>0.83 ± 0.03</td>
</tr>
</tbody>
</table>

*Mean ± SD
RYGB: Total Energy Expenditure vs. Weight

- Baseline
- 1.5 mo post-surgery
- 6 mo post-surgery

Weight (kg) vs. Total Energy Expenditure (kcal/d)
RYGB: Percent Change in Weight, Energy Expenditure and HR

- Percent change from baseline to 1.5 month post-surgery
- Percent change from 1.5 month post-surgery to 6 months post surgery
7-d Physical Activity and HR Monitoring

- Counts
- HR

Activity (counts/min) vs. HR (bpm) over a 7-day period.
CSTS is a parametric method that examines multiple subjects (cross-sectional) and how they change over the course of time (longitudinal).

Any series of values of a variable taken at successive times or in a fixed order.

CSTS is well suited to describe the dynamic series of minute-by-minute EE, taking into account the correlation structure of the data.
CSTS Model

CSTS model with random intercepts and random slopes

- Time varying variables: HR, HR2, 1-period and 2-period lagged and lead values of HR
- Time varying variables: PA, PA2, and 1-period and 2-period lagged values of PA
- Subject characteristics: age, age2, gender, weight, height, minimum HR, sitting HR
- Interaction terms: HR × height, HR × weight, HR × Age, HR × gender, PA × weight and PA × gender
- Validated against calorimeter data: error 0.2±7.5%

Zakeri, J Appl Physiol 2008
7-d Mean Total Energy Expenditure

Total Energy Expenditure (kcal/min)

- Baseline
- 1.5 mo post-surgery
- 6 mo post-surgery

Mean Total Energy Expenditure

Values:
- 2000
- 2250
- 2500
- 2750
- 3000
- 3250
- 3500
Hall Mathematical Model of Human Metabolism

- Based on specified initial conditions, model simulates how diet perturbations result in adaptations in energy expenditure and fuel selection giving rise to changes of body weight and composition.

- Based on law of energy conservation, such that body composition changes result from imbalances between the energy intake and energy utilization.

- Composed of 8 ordinary differential equations, quantitatively tracks the metabolism of all three dietary macronutrients.

Quantitative Data Integration

Mathematical Model of Human Metabolism

Food Intake
- Carbohydrate Intake
- Fat Intake
- Protein Intake
- Physical Activity

Fuel Selection
- Carbohydrate Oxidation
- Fat Oxidation
- Nitrogen Excretion

Body Composition
- Body Weight
- Lean Mass
- Fat Mass
- Body Water

Body Water

Energy Expenditure
- Resting Metabolic Rate
- Total Energy Expenditure

Metabolic Fluxes
- Glucose Turnover
- Gluconeogenesis
- Lipolysis
- Lipogenesis
- Protein Turnover

Hall Model: Predicted vs. Observed Weight and FM

WT Change (observed)
WT Change (predicted)
FM Change (observed)
FM Change (predicted)
Hall Model: Predicted vs. Observed BMR

Energy Expenditure (kcal/d)

BMR (observed)

BMR Change (predicted)
Hall Model: Predicted TEE

Predicted TEE (kcal/d)

months
Hall Model: Predicted Energy Intake

Predicted Energy Intake (kcal/d)

months

predicted energy intake vs. months for different cases
Hall Model: Predicted vs. Observed

<table>
<thead>
<tr>
<th></th>
<th>Pre-surgery</th>
<th>1.5 mo post-surgery</th>
<th>6 mo post-surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model</td>
<td>Observed</td>
<td>Model</td>
</tr>
<tr>
<td>WT (kg)</td>
<td>158*</td>
<td>158</td>
<td>143</td>
</tr>
<tr>
<td>FM (kg)</td>
<td>88</td>
<td>86</td>
<td>80</td>
</tr>
<tr>
<td>RMR (kcal/d)</td>
<td>2309</td>
<td>2309</td>
<td>1803</td>
</tr>
<tr>
<td>PAL</td>
<td>1.38†</td>
<td>1.38†</td>
<td>1.32†</td>
</tr>
<tr>
<td></td>
<td>1.51‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEE (kcal/d)†</td>
<td>3130</td>
<td>3163†</td>
<td>2238</td>
</tr>
<tr>
<td></td>
<td>3471‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EI (kcal/d)</td>
<td>3231</td>
<td>1713</td>
<td>768</td>
</tr>
</tbody>
</table>

*Mean
†Calorimeter
‡CSTS
Summary: Preliminary Results

- RYGB induced substantial weight loss equivalent to 20% initial weight in 6 months.
- Weight loss was associated with an initial fall in FFM and a linear decline in FM.
- Energetic adaptations and a shift towards fat oxidation occurred early and persisted at 6 months.
- RYGB induced substantial declines in free-living energy intake and TEE.
- Hall Mathematical Model accurately predicts changes in weight, fat mass and RMR that are used to predict TEE and energy intake.
Modelling Challenges

1. Further develop weight gain/loss model in children and adolescents (one or two models?)

2. Methods to infer physical activity levels

4. Determine the accuracy and precision of models for groups vs. individuals

5. Develop practical clinical tools for counseling families on diet, EE, and expected weight gain/loss
Acknowledgments

VIVA and TeEnergy
- Study participants

Co-investigators
- Kenneth J. Ellis, PhD
- Roman Shypailo
- William W. Wong, PhD
- Mary L. Brandt, MD
- Vadim Sherman, MD
- Edmund Christiansen, PhD
- Thorkild Sorensen, MD, PhD
- Issa Zakeri, PhD
- Kevin D. Hall, PhD
- Carson C. Chow, PhD

Study coordinator/nutritionists
- Theresa Wilson, MS, RD
- Margaret E. Lee
- Marilyn Navarrete

Laboratory
- Nitesh Mehta
- Cindy Clarke
- William Liu

Calorimetry
- Anne Adolph
- Mo Puyau
- Firoz Vohra

Body Composition
- Maryse Laurent

Metabolic Research Unit
- Janice Betancourt & staff
- Ann McMeans & staff

Support Staff
- Adam Gillum

NIH RO1 DK59264
USDA/ARS 6250-51000-037