Adaptive cross-level modeling of infectious diseases in wild mammals

Dobromir Dimitrov, PhD
Outline

Introduction
Mathematical modeling of infectious diseases in human vs. wild animals
Bat species as viral hosts

Cross-level immuno-epizootic approach
Within-host and between-host models
Theoretical framework and cross-level integration
Advantages and challenges
Modeling infectious diseases

Infectious diseases in humans and domestic animals:

- Individuals are strictly identifiable
- The disease progression is recorded and studied
- Vaccination and treatment programs are readily available
- Available data – case histories, vaccination and treatment records

Traditional compartmental framework:

\[
\begin{array}{c}
S \\
E \\
I \\
R
\end{array}
\]

S – susceptibles
E - exposed
I – infected
R – removed (recovered)

Infectious diseases in wild animals:

- Trackability of individual animals is often infeasible
- Impossible to distinguish all phases of a disease progression
- Vaccination and treatment programs are rarely used
- Available data - snapshot field data, experimental infections
Inter-host models

- Describe the dynamics of a viral infection into a population
- Connect with the possible outcomes of viral exposures at population level including vanishing infections, coexistence, and population death
- Could potentially address questions about:
 - Transmission routes and contact rates;
 - Survival probabilities and conditions (for the population);
 - Conditions for disease eradication.
- Data sources for parameterization – field studies

Bats as viral reservoirs: relatively long life span, strong parental care, flight and migratory behavior, dense aggregation.
Dynamic alternatives
Parameter estimates

\[d = 0.02 \]

\[\beta \]

\[\text{Susceptibility (p)} \]

\[\text{Contact rate (\beta)} \]

- Steece, 1989
- Turmelle, 2008
- Constantine, 1957

- Survival
- Enzootic
Experimental Infections

Dynamics of Humoral Response to RV infection

Mortality rate

Initial viral dose

Days Post Infection

Rabies VNA Titer

Days Post Infection

0 13 43 75 104 137
Intra-host models

- Describe the dynamics of a viral infection into an individual host
- Connect with the observed outcomes of viral exposures including asymptomatic infections, development of immunity, death
- Could potentially address questions regarding:
 - Pathogenesis of the disease;
 - Survival probabilities and survival conditions;
 - Duration and strength of acquired immunity.
- Data sources for parameterization – experimental infections

Immune Response Model

B – B cells concentration
T – T cells concentration
A – virus specific antibodies
V – viral concentration
Dynamic alternatives

- Infected bat
- Exposed bat
- Secondary phase
- Recovering bat

Graphs showing concentrations over time for B-cells, T-cells, antibodies, and virus.
Theoretical framework

Individual Level

- Immune Response Model
- Energetic Model

Effects of individual diversity on transmission, susceptibility, infectiousness, recovery, and survival

Population Level

- Ecotypic Model
 - Identical individuals
- Population Model
 - Diversity in Immune response
- Meta-Population Model
 - Environmental factors

Effects of individual diversity on transmission, susceptibility, infectiousness, recovery, and survival
Ecotypic Model (Immunotypes)
Cross-level integration

Define mechanisms at intra-host level based on results from inter-host model:

- Threshold-based infectiousness
- Conditional transmission
- Infective-dose-dependence
- Threshold-based mortality
- Complete or partial immunity upon survival
Cross-level integration

\[\frac{1}{\gamma_i} = \text{Duration of the class } E_i \]

\[\frac{1}{d_i} = \text{Lifespan of the class } I_i \]

\[p_{ij}, q_{ij} - \]

Probabilities that infectious bats have viral concentrations in the ranges initiating transfers to different infected and recovered classes

\[\gamma_5 = \frac{1}{t_{\text{exp}}}, \quad q_{52} = \frac{t'_{52} + t''_{52}}{t_{\text{exp}}} \]
Alternatives and population profile

| Immunosuppression | Imm1 >>> Imm2 >>> Imm3 >>> Imm4 | Immunocompetence |

Graphs showing population dynamics over time for different states and types.
Variation in initial immunological profile
Reproductive immunotypic mixing

No mixing

10% mixing

20% mixing
Migratory immunotypic mixing

20% mixing

10% mixing

Mixing rate:
- 5%
- 10%
- 15%
- 20%

Mixing rate:
- 0%
- 5%
- 10%
Summary

- Integrative modeling technique combines the aggregating approach of traditional epidemiology with the individual diversification, based on data provided by within-host models.
- This framework allows for analysis of the effects of the individual differences in susceptibility, immune response efficiency, transmission ability, and chances of survival on the disease dynamics and the immunological profile of the population.
- The effects of different factors, such as adverse weather, climate changes, food availability, and stresses can be investigated through their influence on host physiology, and consequent population level changes.

Challenges:
- To identify diversity sources and determine the optimal level of complexity of the model
- To establish feasible mechanisms of cross-level integration
- Interface with the experimental and field data
- Parameter identifiability and estimation
Acknowledgements

Collaborators:

- Tom Hallam and Gary McCracken, University of Tennessee
- Amy Turmelle and Charles E. Rupprecht, CDC Atlanta
- Aaron King, University of Michigan
- Paula Federico, Capital University
- Jeff Nichols, Oak Ridge National Laboratory