<table>
<thead>
<tr>
<th>NIMBioS Postdoc Name & Contact</th>
<th>Project Title</th>
<th>Research Interest</th>
</tr>
</thead>
</table>
| **Dr. Caroline Farrior**
Ph.D. Ecology & Evolutionary Biology, Princeton
cfarrior@nimbios.org | **Project Title:** Rare disturbance events and their impact on evolutionarily stable strategies of forest trees in competition for light, water, and nutrients.
Caroline Farrior (Ecology and Evolutionary Biology, Princeton, 2012) examines the roles of frequency, severity and predictability of wind storms and drought in determining properties of forest stands. | |
| **Dr. Jake Ferguson**
Ph.D. Biology, Univ. of Florida
jakelferguson@nimbios.org | **Project Title:** Modeling the role of seasonality on ecological populations.
Jake Ferguson uses semi-discrete models to address questions about how the differing timescales of resource acquisition and reproduction inherent in animal populations can resolve existing paradoxes in population ecology and can improve predictions of animals coupled to seasonally varying environments. | |
| **Dr. Sean Hoban**
Ph.D. Biology, Univ. of Notre Dam
shoban@nimbios.org | **Project Title:** Developing simulation-based sampling guidelines for conserving the genetic resources of rare or economically important plant species.
Sean Hoban uses population and genetic models as well as optimization techniques to develop practical guidelines for ex situ conservation of plants for botanic gardens, seed banks, and breeding programs. | |
| **Dr. Elizabeth Hobson**
Ph.D. Biology, New Mexico State Univ.
ehobson@nimbios.org | **Project Title:** The evolution of social complexity across taxa.
Elizabeth Hobson integrates methods related to the evolution of social complexity across taxa. | |
| **Dr. Suzanne O’Regan**
Ph.D. Applied Mathematics, Univ. College Cork
soregan@nimbios.org | **Project Title:** A mathematical framework for elucidating the impact of environmental drivers on the incidence of emerging and re-emerging pathogens.
Suzanne O’Regan is developing a mathematical framework to elucidate the influence of changing environmental drivers on infectious disease risk. | |
| **Dr. Ioannis Sgouralis**
Ph.D. Mathematics, Duke
sgouralis@nimbios.org | **Project Title:** Modeling dynamic renal autoregulation at the organ level.
Ioannis Sgouralis (Mathematics, Duke, 2014) is developing a computational model of renal autoregulation that dynamically represents the myogenic response and tubuloglomerular feedback at the whole kidney level. | |
| **Dr. Sandy Kawano**
Ph.D. Biology, Clemson Univ.
skawano@nimbios.org | **Project Title:** On the measurement of phenotypic selection: A quantitative synthesis.
Sandy Kawano is conducting a quantitative comparison of the analytical methods for estimating phenotypic selection in order to gain a better understand the strengths and weaknesses of each approach, and is developing software to facilitate experimental and synthetic analyses on patterns of phenotypic selection. | |
| **Dr. Nick Matzke**
Ph.D. Integrative Biology, Univ. of California, Berkeley
matzke@nimbios.org | **Project Title:** *Unification of phylogenetic biogeography and species distribution modeling.* Nick Matzke is developing a method to jointly estimate distribution models for a group of related species, linking the large-scale processes studied by historical/phylogenetic biogeography with the fine-scale environmental niche models used in species distribution modeling. |
|---|---|
| **Dr. Angela Peace**
Ph.D. Applied Mathematics, Arizona State Univ.
apace@nimbios.org | **Project Title:** *Stoichiometric food web models: How food quality affects population structures.* Angela Peace is incorporating stoichiometric food web models into three trophic levels: planktonic algae, zooplankton and zooplanktivorous fish using carbon and phosphorus. |
| **Dr. Matt Zefferman**
Ph.D. Ecology, Univ. of California, Davis
mrz1@nimbios.org | **Project Title:** *The evolutionary origins of complex institutions.* Matt Zefferman uses analytical and computational models to investigate the origins of complex political and economic institutions. |