Math 152 – Sample Final Exam Brief Answers – Spring 2016 – Louis Gross

1. (a) By definition $W'(a) = \lim_{h \to 0} \frac{W(a+h) - W(a)}{h}$ gives the instantaneous growth rate of the weight of a fish of age a. The units are kg/month

(b) W'(2) is the slope of the tangent line to the graph of W(a) at a=2 and this slope is approximately .25 kg/month.

- 0.25 0.2 € 2 0.15 0.1 0.05 0 5 1 2 3 4 6 Age (months)
- 2. (a) At birth, using the equation for the derivative, L'(0) = .2(40 3) = 7.4 cm/month (b) Since $\lim_{t \to \infty} L(t) = L_{\infty} = 40$ we are looking for the age at which the fish has length

20cm. So we want to find a such that L(a)=20. But first we need to use the fact that

L(0)=3 to find t₀. So $L(0) = 3 = 40(1 - e^{-2(0-t_0)}) = 40(1 - e^{-2t_0})$ so $t_0 = 5\ln(\frac{37}{40}) = -.39$ Then $L(a) = 20 = 40(1 - e^{-2(a+.39)})$ so $a = -5\ln(.5) - .39 = 3.08$ months.

3. Separate variables and integrate to get $y(t) = 4e^{t^2+t}$

4. (a) We want to find α so that $\int_{\alpha}^{1} (\alpha + x) dx = 1$ which gives $\alpha = \frac{1}{2}$ (b) $P[X \le \frac{1}{2}] = \int_{-\infty}^{\infty} (\frac{1}{2} + x) dx = \frac{3}{8}$

(c) $E[X] = \int_{-\infty}^{1} x(\frac{1}{2} + x)dx = \frac{7}{12}$

(c)

(d) The median has value m if $\frac{1}{2} = \int_{0}^{m} (\frac{1}{2} + x) dx = \frac{m}{2} + \frac{m^{2}}{2}$ so there are two possible m

values that satisfy this quadratic equation but only one of them is feasible so

$$m = \frac{\sqrt{5}}{2} - \frac{1}{2} = .618$$
5. (a) $\frac{dx}{dt} = .02 \frac{kg}{l} \cdot 100 \frac{l}{hr} - \frac{x}{20000} \frac{kg}{l} \cdot 100 \frac{l}{hr} = 2 - \frac{x}{200}$
(b) $x(0) = .005 \frac{kg}{l} \cdot 20000l = 100kg$
(c) We can separate variables to get $\int \frac{1}{400 - x} dx = \int \frac{1}{200} dt$ and then integrating we get $x(t) = 400 - Ke^{-\frac{t}{200}}$ and using $x(0) = 100$ gives K=300 so $x(t) = 400 - 300e^{-\frac{t}{200}}$
(d) We want to find a time T so that $x(T) = 200$ so $200 = 400 - 300e^{-\frac{T}{200}}$ so $T = 200 \ln(1.5) = 81.09hr$

6. If we set $\frac{dN}{dt} = 0$ we see that this means $N(1-N^2) = 0$ so N=0, or N=1 or N=-1 but since N is a density of cells it cannot be negative so the only feasible equilibria are N=0 and N=1. Note that if N is slightly larger than 0, N'(t) > 0 for example if N=.1 then $N'(t) = \frac{2(.1)}{1.01} - .1 = .098$ so N=0 is not a stable equilibrium because if the population were close to 0 but positive, the population would grow. However if the population were slightly below 1, then N'(t) > 0 and if the population were slightly greater than 1, then N'(t) < 0 so N=1 is a stable equilibrium. You can check this by noting that if N=.99 then $N' = \frac{2(.99)}{1+.99} - .99 = .005$ and if N=1.01 then $N' = \frac{2(1.01)}{1+1.01} - 1.01 = -.005$

7. $\int_0^2 (4x - 2x^2) dx = \frac{8}{3}$

8. (a) density is maximum when f'(x) = 0 which means $x = \frac{1}{\sqrt{6}} = .408m$

(b)
$$\int_0^1 6x e^{-3x^2} dx = 1 - e^{-3} = 1 - .05 = .95$$

9. If A(t) = area of the fungal culture at time t, then A'(t) = kA(t) implies $A(t) = A(0)e^{-kt}$ So measure A(t) at several times (e.g. at times t_1, t_2, t_3 , etc.) and since $\ln(A(t)) = \ln(A(0)) - kt$ then plot t_i versus $A(t_i)$ on semilog scale. If this gives a linear graph, accept the hypothesis, otherwise reject it. (Note: you could calculate \mathbb{R}^2 from the linear regression and reject the hypothesis if \mathbb{R} is not above .5 say)

- 10. (a) Use integration by parts to get $-\frac{3}{4}e^{-4x}(x+\frac{1}{4})+C$
 - (b) $\frac{1}{2} + \frac{1}{\pi}$

11. (a)
$$y' = 4\ln(2t+1) + \frac{8t}{2t+1}$$

(b)
$$g'(x) = \frac{1}{(x+1)^2}$$

12. (a) $K = \lim_{a \to \infty} B(a) = 150$ tons/hectare

(b)
$$B'(a) = \frac{13500e^{-\frac{a}{10}}}{(10+90e^{-\frac{a}{10}})^2}$$

- (c) B(a) = 75 when $a = 10 \ln 9 = 21.97$ years
- (d) B'(a) will be maximized when B''(a) = 0 so

$$B''(a) = rB'(\frac{K-B}{K}) + rB(-\frac{B'}{K}) = rB'(1-\frac{2B}{K})$$
 so this = 0 when $B = \frac{K}{2}$