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NIMBioS Webinar Series

NIMBIoS is hosting a series of webinars focusing on topics at the interface of mathematics and biology. Unable to attend the live presentation? That's ok! Register to attend, and you will
receive a link to the webinar recording.

Upcoming Webinars

Mathematical modeling of malaria transmission by mosquitoes
Date: 3:30 EDT Tuesday, April 21, 2020
Speaker: Dr. Vitaly Ganusov, Assoc. Professer, Microbiology, University of Tennessee, Knoxville

Meoderator: Dr. Louis Gross, NIMBioS Director and Chancellor's Professor of Ecology and Evolutionary Biology and Mathematics at the University of
Tennessee

Abstract: Malaria is a disease caused by parasites from the genus Plasmodium. Every year, 200 million individuals experience malaria, and
approximately 500,000 of these individuals die. It is well established that malaria is transmitted from person to person by mosquitoes. Yet,
quantitative details of how likely a bite by an infected mosquito results in infection remains poorly understood. In my talk | will analyze experimental
data in which mosquitoes, carrying Plasmodium yoelii sporozoites, bite individual mice, and mathematically model the likelihood of infection as a
function of several parameters (number of sporozoites per mosquito, feeding time, blood take probability) that were recorded in the data. Our results
suggest that infection probability depends strongly on the number of sporozoites mosquitoes carry, and less on the probing time, and is independent
of whether a mosquito takes the blood meal or not. | will also discuss implications of these results for modeling epidemiclogical dynamics of malaria
and for clinical trials of malaria vaccines.

NIMBioS.org A recording of this webinar will
be posted within two days NIMBioS

. National Institute for Mathematical
and Biological Synthesis
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Webinar Objectives

* Provide an overview of modeling
objectives and the process of developing
a model

* Describe different types of models and
their applications

* Discuss the limitations of models and
how they are evaluated



medRxiv preprint doi: hitps:/doi.org/10.1101/2020.03.19.20038729. The copyright holder for this preprint (which was not peer-reviewed) is the
authorffunder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Fear, Access, and the Real-Time Estimation of Etiological Parameters
for Outbreaks of Novel Pathogens

Authors: Nina H. Fefferman ', Eric T. Lofgren’, Nianpeng Li*, Pieter Blue’, David J.
Weber® and Abdul-Aziz Yakubu®.

" Corresponding Author: N.H. Fefferman, 447 Hesler Biology Building, Department of Ecology
and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, email:
nfefferm@utk.edu
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An SIR-type model of an epidemic
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JAMA Insights (ONLINE FIRST] [FREE)
March 26, 2020

Turbulent Gas Clouds and Respiratory Pathogen
Emissions

Potential Implications for Reducing Transmission
of COVID-19

Lydia Bourouiba, PhD!

& Author Affiliations | Article Information

JAMA. Published online March 26, 2020. doi:10.1001/jama.2020.4756

A model that uses experimental data
on sneezes linked to mathematical
analysis of turbulent fluid dynamics

Lydia Bourouiba, MIT



Probability of current COVID-19 outbreaks in all US counties
Emily Javan, Dr. Spencer J. Fox, Dr. Lauren Ancel Meyers

Corresponding author:

Lauren Ancel Meyers

The University of Texas at Austin
laurenmeyers@austin.utexas.edu

A model that uses a "N
branching process to N s
project the spread of USRI
COVID-19 in 13
different US
counties.

Lauren Ancel Meyers, Univ. of Texas



Infectious Disease Modellng at NII\/IBloS

intervention strategles

Evaluating the shifts in antimicrobial use practices and &
resistance resulting from risk mitigation strategy

Climate change and vector-borne diseases ‘

Synthesizing and predicting infectious disease while
accounting for endogenous risk

Integrated modeling and analysis of within-host infection
and between-host transmission for Toxoplasma gondii
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Order of topics

* Science and models

* Methods of investigation and theory
* Constraints on models

* Evaluating models

* Some lessons
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What is science?

Science is thought to be a process of pure

nism, taking the meaning out of mystery,

ng everything away, concentrating all our
on measuring things and counting them up.
like this at all. The scientific method is

rk, the making up of stories. The difference
this and other imaginative works of the
nind is that science is then obliged to find out
the guesses are correct, the stories true.

y drives the enterprise, and the open
acknowledgement of ignorance.

Lewis Thomas - Sierra Club Bulletin,
March/April 1982, P. 52
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What is science?

Science is thought to be a process of pure
reductionism, taking the meaning out of mystery,
explaining everything away, concentrating all our
attention on measuring things and countmg them up.
It is not like this '
guesswork, the aklng up of StOFlES The) wiipr| Models
between this and o rks of the
human mind is that science is then obliged to find out
whether the guesses are correct, the stories true.
Curiosity drives the enterprise, and the open
acknowledgement of ignorance.

Lewis Thomas - Sierra Club Bulletin,
March/April 1982, P. 52

@‘NIMB.os TENNESSEE

ssssssssssssssssssssss KNOXVILLE



What is science?

Science is thought to be a process of pure
reductionism, taking the meaning out of mystery,
explaining everything away, concentrating all our
attention on measuring things and counting them up.
It is not like this at all. The scientific method is
guesswork, the making up of stories. The difference
between this and other imaginative works of the

human mind js-that science is then find qut
whether the guesses are correct the Data
Curiosity drives the , and the open
acknowledgement of ignorance.
Lewis Thomas - Sierra Club Bulletin,
March/April 1982, P. 52
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EXxpressing

Verbally
Graphically
Mathematically
Through Simulation

Approaches to C

1. Descriptive: (a) Empirical
Comparative

. Mechanistic (a) Compart
adaptationist

3. Systems - hierarchy theor
4. Individual- or agent-based
5. Expert systems, machine 1€c
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The “stories” in science are models

A model is a simplification of reality. Think of it
as a map - it includes some features that represent
what we observe but not others. Modeling is the
process of selective ignorance - we select what to
include and what to 1gnore
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The “stories” in science are models

Is this less of a simplification? Is it closer to
“reality”?
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You make models all the time:

In the current pandemic, you are taking
account of many factors, data from sources
you trust, and your personal values/beliefs
to decide who to interact with, whether to
leave your home, and how often to do so.
You may not be making a “formal”
calculation of your personal risk of harm,
but an underlying “model” is involved.

So you are deciding what is

“best” for you
&} NIMBioS TENNESSEE
@ o and Bielogicar Synthesre




You make models all the time:

What decision do you make in more “normal”
times when faced with:

So you are deciding what is
NIMBioS  “best” for you quite regularly g o TENNESSEE

2 KNOXVILLE




Models in Biology

Physiology

Disease
Neurobiology
Microbiology
Genetics
Model Systems
INIMBic 0 5 o TENNESSEE
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Taxonomy of Models

This could be based on the model objectives, on
the general approaches used, or on the
methodology. One possibility is:

conceptual
verbal
quantitative

physical (e.g. real, such as a physical model for
an animal to evaluate heat-loading)

biological (including animal models used for
experiments, cell lines, and tissue cultures)

Note that modeling text books typically classify
models based on mathematical approach.
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Possible Model Objectives

1. Suggest observations and experiments

2. Provide a framework to assemble bodies of facts - provide a means to standardize
data collection

3. "Allows us to imagine and explore a wider range of worlds than ours, giving new
perceptions and questions about how our world came to be as it is" F. Jacob - The
Possible and the Actual, 1982

4. Clarifies hypotheses and chains of argument
5. Identifies key components in systems
6. Allows simultaneous consideration of spatial and temporal change

7. Extrapolate to broad spatial or long temporal scales for which data can not easily be
obtained

8. Prompts tentative and testable hypotheses

9. Serves as a crude guide to decision making in circumstances where action cannot
wait for detailed studies

10. Provides an antidote to the helpless feeling that the world is too complex to
understand in any generality - provides a means to get at general patterns and trends

11. To predict how a system will behave under different management, and control the
system to meet some objective



Models and tradeoffs

Generality Precision

Descriptive Models

Models for Theory
Development

System Simulation
Models

Realism

No one model can do everything
B} NIMBioS PERNESSEE
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Environmental Modeling

Species densities GIS map layers (Vegetation,

Data sources

. iy Roads, Species densities
Physical conditions _ I

Animal telemetry hydrology, elevation),Weather,

Management input

Harvest e
regulation \ ~ i
Water control Evaluation/Analvsi

valuallon/ANalySIS ik e I i
Simulation

Statistical

" Differential
/ equations
4
7 Matrix

Agent-based

Vlsuql_lz_atlon, corrqboratlon, Matlab, C++, Distributed,
sensitivity, uncertainty
Parallel



Describing Models

There is no single protocol to describe models. Some
are described graphically
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Beckage, B., L. J. Gross, K. Lacasse, E. Carr, S. S. Metcalf, J. M. Winter, P. D. Howe, N.
Fefferman, T. Franck, A. Zia, A. Kinzig and F. M. Hoffman. 2018. Linking models of human
behavior and climate alters projected climate change. Nature Climate Change 8, 79-85



Describing Models

Some are described mathematically with definition
of the variables and parameters

dN,(1)
= ay(a, — N,) — f(N,)N,,
dt (1)

dN, (1)
dt — E}If(Nl]Nl - E:’zNz - “{I]Nz:'
aa,N
N — 1**3 | :, ..?,
f(N)) 1+ s, (2)

Federico, P, L. J. Gross, S. Lenhart, and D. Ryan. 2013. Optimal control in individual-based
models: implications from aggregated methods. American Naturalist 181: 64-77



Describing Models

Described through the code that simulates the system
and associated documentation and metadata

# Filename: EcoSuccessionPleot.R

Individual steps randomly # R sc _rlpt to ) )
— to any neighboring cell. # - Print out a table showing landscape structure over time
|IEL decreases.

# A function to perform matrix exponentiation

" «—Ffunction (A, n){
if(n==1) A else {B<-A; for(i in (2:n)){A<-A%%B}}; A
}

Is individual on green cell? IEL remains unchanged

# Enter the transfer matrix
T = matrix(c{ 8.24, .85, 8.81,
.82, B.Be, B.12,
Individual eats grass. #.81, @.86, B.83 ), ncol = 3)

IELinereases. | || e

@ = matrin(c{ 1, @, @ ), ncol = 1)

Individual does not N 5 e
|EL > birth threshold? reproduce. # We will create a matrix x that has three columns.
IEL remains unchanged. # Each column will contain time series data for one class.

# Each row will correspond to a time step.
w = matrix(rep(®, 281=3), ncol = 3)

Individual reproduces. x[1, ] = x@ # Data for time step t = @
IEL decreases by half_

# Use for loop to generate times series data

for (t in 1:200){
w[t+1, ] = T%*%t %% x@ # Data for time step t
}

Individual dies.
The individual is removed.

# Time series information for proportion underwater is
# in the first column
u=x[,1]
Is individual harvested? # Time series inmformation for proportion saturated but
The individual is removed. # not underwater is in the second column
s = x[ ,2]

# Time series information for proportion dry is in the

# thid column

d =x[ , 3]
Federico, P, L. J. Gross, S. Lenhart, and D. Ryan. 2013.
Optimal control in individual-based models: F Bodine, E., S. Lenhart and L. J. Gross. Mathematics
implications from aggregated methods. American for the Life Sciences. Princeton University Press

Naturalist 181: 64-77 (2014).



Describing Models

Some are described by the statistical methodology
used, data and metadata

Event Event Rate Change(s) to state
Number variable(s) (AX)
1 Infection of uninfected host by pathogen 1 FigAt+o | Jg—Jz—1
(A1) h—htl
2 Infection of uninfected host by pathogen 2 FyJzAt+o | Jo—]z—1
(A1) L=+l
3 Infection by pathogen 1 of host singly infected by FiLAt+o | hb—)-1
pathogen 2 (At) 12— 121
4 Infection by pathogen 2 of host singly infected by EJiAtvo | 1 —]i-1
pathogen 1 (Ar) Jio—=Tiat1
5 Death of host singly infected by pathogen 1 and uliAt+o L—-1
replacement with an uninfected host (A1) Jo—Jzt+1
6 Death of host singly infected by pathogen 2 and uhAt+o L—)-1
replacement with an uninfected host (AD) Jo—Jzt+1
7 Death of coinfected host and replacement with an whpAt+o | Jio—Jia-1
uninfected host (A Jo—Jot1

https://doi.org/10.1371/journal.pbio.3000551.t001

Observed counts, Oy Total
Pathogens with n distinct types, strains, or clones n 0 1 2 3 4 5 6 7 8 9 N
Human papillomavirus 25 2,933 140 64 26 102 39 12 2 2 - 5,412
Anther smut (M. violaceum) 102 285 74 60 32 14 3 3 2 1 1 475
B. afzelii on bank voles 7 807 33 26 13 10 11 6 - - - 906
Malaria (P. vivax) 57 1,023 404 291 208 118 50 16 5 1 1 2,117

Abbreviation: NiSP, Noninteracting Similar Pathogens

https://doi.org/10.1371/journal.pbio.3000551.t002

Hamelin, F. M., L. J.S. Allen, V. A. Bokil, L. J. Gross, F. M. Hilker, M. J. Jeger, C. A. Manore, A. G. Power,
M. A. Rua, N. J. Cunniffe. 2019. Co-infections by non-interacting pathogens are not independent and require
new tests of interaction. https://doi.org/10.1371/journal.pbio.3000551



Ecological Modelling 221 (2010) 2760-2768

Contents lists available at ScienceDirect

Ecological Modelling

journal homepage: www.elsevier.com/locate/ecolmodel

The ODD protocol: A review and first update

Volker Grimm?*, Uta BergerP®, Donald L. DeAngelis¢, ]. Gary Polhill94, Jarl Giske€, Steven F. Railsback!2

4 Helmholtz Centre for Environmental Research-UFZ, Department of Ecolagical Modelling, Permoserstr. 15, 04318 Leipzig, Germany
B Institute of Forest Growth and Computer Science, Dresden University of Technology, P.0. 1117, 01735 Tharandt, Germany

¢ USGS/Biological Resources Division and Dept. of Biology, University of Miami, PO Box 249118, Coral Gables, FL 33124, USA

4 Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen, AB15 8QH, United Kingdom

€ University of Bergen, Department of Biology, P.0. Box 7803, N-5020 Bergen, Norway

f Department of Mathematics, Humboldt State University, Arcata, CA 95521, USA

€ Lang, Railshack & Associates, 250 California Avenue, Arcata, CA 95521, USA

An example of a general protocol developed specifically for
agent-based models but useful across other model types is the
ODD Protocol. This is an update of a protocol first
published in 2006 for “Overview, Design Concepts and
Details”



Elements of the updated ODD protocol

1. Purpose
2. Entities, state variables, and scales
3. Process overview and scheduling

4. Design concepts
« Basic principles
» Emergence
« Adaptation
» Objectives
» Learning
» Prediction
» Sensing
« Interaction
» Stochasticity
» Collectives
« Observation

5. Initialization

6. Input data
7. Submodels

Grimm et al. (2010) Ecological Modelling 221: 2760-2768



Constraints on models

Data constraints: Available data may not be sufficient to
specify appropriate functional forms, interrelationships, or
parameters. May force aggregation of components. May not
be sufficient to elaborate criteria for evaluation of model
performance.

Effort constraints: Resource constraints may limit the
amount of detall it is feasible to include. Limits on time
modelers and collaborators may invest as well as pressure
to produce results.

Computational constraints: Despite great enhancements in
computational resources, there are many problems still not
feasible to carry out computationally.

Other constraints: ethical or other societal considerations.

\ THE UNIVERSITY OQF
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Constructing models

Given the above, the entire modeling process involves
evaluation of alternative approaches to assess the most
appropriate procedures for the questions of concern. This is
part of the process of selective ignorance involved in
constructing models.

Just as public policy decisions involve a balancing act

between various alternatives which satisfy to varying
degrees the desires of different stakeholders, realism
In modeling involves balancing different approaches to
meet a goal.

Realistic modeling is the science of the actual rather
than the science of the ideal.

\ THE UNIVERSITY OQF
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Model evaluation - some terminology

Verification - model behaves as intended, i.e. equations correctly
represent assumptions; equations are self-consistent and
dimensionally correct. Analysis is correct. Coding is correct - there
are no bugs.

Calibration - use of data to determine parameters so the model
"agrees" with data. This is specific to a given criteria for accuracy.
Some call this Tuning or Curve-fitting.

Corroboration - model is in agreement with a set of data independent
from that used to construct and calibrate it.

Validation - model is in agreement with real system it represents with
respect to the specific purposes for which it was constructed. Thus
there is an implied notion of accuracy and domain of applicability.

Evaluation (testing) - appropriateness to objectives; utility;
plausibility; elegance; simplicity; flexibility.

\ THE UNIVERSITY OQF
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Evaluation and model objectives

Given the many objectives for models, we should
expect there to be multiple criteria for evaluating
whether a model is useful.

Before developing a model in any detail, criteria
should be established for evaluating its use

Evaluation procedures should account for constraints
of Data, Effort and Resources, Computation

Evaluation criteria should be taken into consideration
In assessing methods, level of detail, scale, and what
to ignore in deciding on a model.

\ THE UNIVERSITY OQF
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Evaluating different types of models

Models for theory development —
General, some realism, little precision.

Make qualitative comparisons to patterns, not
guantitative ones, over some parameter space.
No calibration or corroboration performed, except
theoretical corroboration (meaning that model
agrees with the general body of theory in the

field).

B} NIMBioS PSS
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Evaluating different types of models

Descriptive models-
Precise, little realism, not general

Statistical hypothesis testing; time series analysis
methods applied.

Models for specific systems -

Realism, some precision, not general
Quantitative comparisons, constrained by available
data. Compare component-by-component if data are
available.

\ THE UNIVERSITY OQF
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Example of complex model evaluation — Global Climate Models

PCMDI - Program For Climate Model Diagnosis and Ini FCMDI Home

United
Dol‘ma“ -"n’%ay Japan Kingdom

e L - CMIP5 Coupled Model Intercomparison Project

The Netheriands Ching e

S CMIP3 CMIP5 Accomplishments Links Contact

CMIP5 promotes a standard set of model simulations

from 20 different GCMSs in order to:

* evaluate how realistic the models are in simulating
the recent past,

* provide projections of future climate change on
near term (out to about 2035) and long term (out to
2100 and beyond), and

* understand factors responsible for differences in
model projections, including quantifying some key
feedbacks such as those involving clouds and the

carbon cycle https://pcmdi.llnl.gov/mips/cmip5



Global mean temperature near—term projections relative to 1986-2005

2.5¢ Observations (4 datasets)
Historical (42 models)
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Despite the importance of evaluation,
many published models lack explicit
criteria or consideration of this. Why?

1. It’s difficult and requires potentially different skill sets
from those constructing and using models.

2. Science iIs very much a human enterprise and it is
natural that once one has devoted considerable effort
to developing a particular model, it is difficult to
critique yourself.

3. Modern settings with a great amount of team effort to
develop models or experimental protocols can
constrain individuals who do not wish to be an outcast
In a lab.

THE UNIVERSIT

@‘NIMBIOS TENNESSEE

. National
@ J. ......................



Criteria | use in Reviewing Modeling
Papers

1. Are the models appropriate to the biological questions
being addressed?

2. Are the underlying biological questions of potential
Interest to a significant fraction of the journal’s audience?
3. Does the mathematics/model teach us anything new
that is biologically significant?

4. |s the mathematics/modeling correct?

5. If the paper is strictly theoretical, does it point out
broadly useful new insights?

6. Are the model parameters and variables estimable
from observations?

7. Is there some effort devoted to model evaluation?

@)
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Take home lessons

* Model evaluation for all types of biological
models is relatively rare.

* Set criteria for model evaluation prior to
expending a lot of effort on a model.

* Tie evaluation criteria to model objectives.

* Encourage consideration of evaluation in all your
educational initiatives.

* Multiple models are good — encourage this.

* Consider whether an evaluation has been done
or discussed whenever you review a paper.
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Thank you for
your
participation

Questions/comments? Please use the Questions
Button on Zoom to post these.
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